3.1 Big Data Collection Systems
Data collection systems allow collecting, aggregating and moving data from various sources (such as server logs, databases, social media, streaming sensor data from Internet of Things devices and other sources) into a centralized data store (such as a distributed file system or a NoSQL database).

3.1.1 Apache Flume
Apache Flume is a distributed, reliable, and available system for collecting, aggregating, and moving large amounts of data from different data sources into a centralized data store.
Flume Architecture
Flume’s architecture is based on data flows and includes the following components:
· 	Source: Source is the component which receives or polls for data from external sources. A Flume data flow starts from a source. For example, Flume source can receive data from a social media network (using streaming APIs).
· Channel: After the data is received by a Flume source, the data is transmitted to a channel. Each channel in a data flow is connected to one sink to which the data is drained. A data flow can comprise of multiple channels, where a source writes the data to multiple channels.
· Sink: Sink is the component which drains data from a channel to a data store (such as a distributed file system or to another agent). Each sink in a data flow is connected to a channel. Sinks either deliver data to its final destination or are chained to other agents.
· Agent: A Flume agent is a collection of sources, channels and sinks. Agent is a process that hosts the sources, channels and sinks from which the data moves from an external source to its final destination.
· Event: An event is a unit of data flow having a payload and an optional set of attributes. Flume sources consume events generated by external sources.
Flume uses a data flow model which includes sources, channels and sinks, encapsulated into agents. Figure 5.7 shows some examples of Flume data flows. The simplest data flow
 (
168
) (
Data

Acquisition
)
 (
5.3

Big

Data

Collection

Systems
) (
167
)

 (
Bahga

&

Madisetti
,

⃝
c

2016
)
 (
Big

Data

Science

&

Analytics:

A

Hands-On

Approach
)
 (
Sinks
File

Roll

Sink
Thrift

Sink
Avro

Sink
HDFS

Sink
Logger

Sink
)has one source, one channel and one sink. Sources can multiplex data to multiple channels for either load balancing purposes, or, for parallel processing. More complex data flows can be created by chaining multiple agents where the sink of one agent delivers data to a source of another agent.

	Avro Source

	Thrift Source

	Exec Source

	JMS Source

 (
Flume
Sink
Channel
Source
) (
IRC

Sink
HBase

Sink
ElasticSearch

Sink
Custom

Sink
)

 (
Sources
Custom

Source
HTTP

Source
Syslog

Source
Sequence

Generator

Source
NetCat

Source
Twitter

Source
Spooling

Directory

Source
)Figure 5.6: Apache Flume architecture

Flume agents are defined in the configuration files. Box 5.9 shows a generic definition of a Flume agent. In the configuration file, first the sources, channels and sinks for the agent are listed and then each source, channel and sink is defined. Finally the bindings between the sources, channels and sinks are defined.
 (
□

Box

5.9:

Generic

definition

of

a

Flume

agent
<agent

name
>.sources

=

<source-1>

<source-2>

...

<source-
N>
<agent

name
>.channels

=

<channel-1>

<channel-2>

...

<channel-
N>
<agent

name
>.sinks

=

<sink-1>

<sink-2>

...

<sink-
N>
#

Define

sources
<agent

name
>.sources
.<source-1>.type

=

<source

type>
:
<agent

name
>.sources
.<source-N>.type

=

<source

type>
#

Define

sinks
<agent

name
>.sinks
.<sink-1>.type

=

<sink

type>
:
<agent

name
>.sinks
.<sink-1>.type

=

<sink

type>
#

Define

channels
)

 (
Flume
 Agent
External

Source
Data
Store
Sink
Channel
Source
)
(a)
 (
Flume

Agent
External

Source
Data
Store
Sink
Channel
Sink
Channel
Source
Sink
Channel
)

(b)
 (
External

Source
Flume

Agent
Source
(c)
Data
Store
External

Source
Flume

Agent
Source
Flume

Agent
Source
Data
Store
External

Source
(d)
Sink
Channel
Source
Flume

Agent
Sink
Channel
Source
Flume

Agent
Sink
Channel
Sink
Channel
Sink
Channel
)

Figure 5.7: Flume data flow examples

 (
myagent.channels
.<channel-1>.type

=

<channel

type>
:
myagent.channels
.<channel-N>.type

=

<channel

type>
Bind the sources and sinks to the channels
myagent.sources
.<source-1>.channels

=

<channel-1>
myagent.sinks
.<sink-1>.channel = <channel-1
:
myagent.sources
.<source-N>.channels

=

<channel-1>

...

<channel-N>
myagent.sinks
.<sink-N>.channel = <channel-N
)
 (
□

#Format

of

command

to

run

a

Flume
 agent
#sudo

flume-ng

agent

-c

<conf

file

path>

-f

<conf

file>

-n

<agent

name>
#Example
sudo

flume-ng

agent

-c

/
etc
/flume/conf

-
f
/
etc
/flume/conf/
flume.conf

-n

myagent
)
Flume Sources
Flume comes with multiple built-in sources that allow collecting and aggregating data from a wide range of external systems. Flume also provides the flexibility to add custom sources.
· 	Avro Source: Apache Avro is a data serialization system that provides a compact and fast binary data format. Avro uses an Interface Definition Language (IDL) to define the structure of data in the form of schemas. Avro is defined with JSON, and the schema is always stored with the data, which allows the programs reading the data to interpret the data. Avro can also be used with Remote Procedure Calls (RPC) where the client and server exchange the schemas in the handshake process. Avro provides serialization functionality similar to other systems such as Thrift and Protocol Buffers. The Flume Avro source receives events from external Avro client streams. An Avro source can be setup using the following properties in the Flume configuration file for the agent:
 (
□

myagent.sources
 = source1 myagent.sources.source1.type =
avro
 myagent.sources.source1.bind

=

0.0.0.0
myagent.sources
.source1.port

=

4141
)
The bind and port properties specify the hostname of the external Avro client and the Avro port.
· Thrift Source: Apache Thrift is a serialization framework similar to Avro. Thrift provides a software stack and a code generation engine to build services that transparently and efficiently work with multiple programming languages. Like Avro, Thrift also provides a stack for Remote Procedure Calls (RPC). The Flume Thrift source receives events from external Thrift client streams. A Thrift source can be setup using the following properties in the Flume configuration file for the agent:
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=

thrift
)

 (
myagent.sources
.source1.bind

=

0.0.0.0
myagent.sources
.source1.port

=

4141
)
· 	Exec Source: Exec source can be used to ingest data from the standard output. When an agent with an Exec source is started, it runs the Unix command (specified in the Exec source definition) and continues to receive data from the standard output as long as the process runs. The typical use case for the Exec source is the tail command which emits few lines of any text file given to it as an input and writes them to standard output. The tail when used with the -F options outputs the appended data as the file grows. The box below shows an example of setting up an Exec source with the tail command.
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=

exec
myagent.sources
.source1.command

=

tail

-F

/var/log/eventlog.log
)
· 	JMS Source: Java Message Service (JMS) is a messaging service that can be used by Java applications to create, send, receive, and read messages. The JMS source receives messages from a JMS queue or topic. The box below shows an example of setting up a JMS source:
 (
□

myagent.sources
 = s1 myagent.sources.s1.type =
jms
 myagent.sources.s1.initialContextFactory

=
org.apache
.activemq.jndi.ActiveMQInitialContextFactory

myagent.sources.s1.connectionFactory

=

GenericConnectionFactory
 myagent.sources.s1.providerURL = tcp://mqserver:61616 myagent.sources.s1.destinationName = DATA myagent.sources.s1.destinationType = QUEUE
)
To connect with a JMS destination an initial context factory name, a connection factory and a provider URL are required. The destination type can either be a queue or a topic.
· 	Spooling Directory Source: Spooling Directory source is useful for ingesting log files. A spool directory is setup on the disk from where the Spooling Directory source ingests the files. To use the source for ingesting logs, the log generation system is setup such that when the log files are rolled over they are moved to the spool directory. The Spooling Directory source parses the files and creates events. The parsing logic can be configured for the source. The default logic is to parse each line as an event. Though an alternative approach to Spooling Directory source is to use Exec source with tail command, however, it is not as reliable. The box below shows an example of setting up a Spooling Directory source:
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=

spooldir
myagent.sources
.source1.spoolDir

=

/var/log/
apache
/
flumeSpool
 myagent.sources.source1.fileHeader = true
)
· Twitter Source: The Flume Twitter source connects to the Twitter streaming API and receives tweets in real-time. The Twitter source converts the tweet objects to Avro

format before sending them to the downstream channel. The box below shows an example of setting up a Twitter source:
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=
org.apache
.flume.source.twitter.TwitterSource

myagent.sources.source1.consumerKey = CONSUMER_KEY myagent.sources.source1.consumerSecret = CONSUMER_SECRET myagent.sources.source1.accessToken = ACCESS_TOKEN myagent.sources.source1.accessTokenSecret

=

ACCESS_TOKEN_SECRET myagent.sources.source1.maxBatchSize = 10
myagent.sources
.source1.maxBatchDurationMillis

=

200
)
Before setting up the Twitter source, you will need to create a Twitter application from the Twitter developer account and obtain the consumer and access tokens and secrets for the application.
· NetCat Source: NetCat is a simple Unix utility which reads and writes data across network connections, using TCP or UDP protocol. The NetCat source listens to a specific port to which the data is written by a NetCat client and turns each line of text received into a Flume event. The box below shows an example of setting up a NetCat source:
 (
□

myagent.sources
 = source1 myagent.sources.source1.type =
netcat
 myagent.sources.source1.bind

=

0.0.0.0
myagent.sources
.source1.port

=

6666
)
· Sequence Generator Source: Sequence Generator source generates events with a sequence of numbers starting from 0 and incremented by 1. This source is mainly used for testing purposes. The box below shows an example of setting up a Sequence Generator source:
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=

seq
)
· Syslog Source: Syslog source is used for ingesting syslog data. The box below shows an example of setting up a Syslog TCP source.
 (
□

myagent.sources
 = source1 myagent.sources.source1.type

=

syslogtcp
 myagent.sources.source1.host

=

localhost myagent.sources.source1.port = 5140
)
· 	HTTP Source: HTTP source receives HTTP events (POST or GET requests) and converts them into Flume events. While the source can receive events in the form of HTTP POST and GET requests, GET command is used for experimentation only. To convert the HTTP requests into events, a pluggable handler is used. The default handler is JSONHandler, which expects an array of JSON objects. The box below shows an example of setting up a HTTP source:

 (
□

myagent.sources
 = source1 myagent.sources.source1.type = http myagent.sources.source1.bind

=

localhost myagent.sources.source1.port = 81 myagent.sources.source1.handler =
org.apache
.flume.source.http.JSONHandler
)
The bind and port properties specify the hostname and port on which the source should listen to.
· Custom Source: Flume allows customs sources to be integrated into the system. Custom sources are implemented in Java. The Java class files of the custom source along with the dependencies are included in the classpath of the Flume agent and also specified in the agent configuration file shown below:
 (
□

myagent.sources
 = source1
myagent.sources.source1.type

=

org.example.MySource
)

Flume Sinks

Flume comes with multiple built-in sinks. Each sink in a Flume agent connects to a channel and drains the data from the channel to a data store.
· HDFS Sink: The Hadoop Distributed File System (HDFS) Sink drains events from a channel to HDFS. The data is written to HDFS in the form of a configurable file type. HDFS sink supports SequenceFile, DataStream and CompressedStream file types. HDFS sink allows the files to be rolled either when the size of the file exceeds a certain limit, or after a specified interval, or after a certain number of events have been written to a file. The box below shows an example of setting up an HDFS sink:
 (
□

myagent.sinks
 = sink1 myagent.sinks.sink1.type =
hdfs
 myagent.sinks.sink1.hdfs.fileType

=

DataStream myagent.sinks.sink1.hdfs.path = /flume/events myagent.sinks.sink1.hdfs.filePrefix

=

eventlog
 myagent.sinks.sink1.hdfs.fileSuffix = .log myagent.sinks.sink1.hdfs.batchSize = 1000
)
· Avro Sink: An Avro sink retrieves events from a channel and drains the events to a downstream host. The box below shows an example of setting up an Avro sink:
 (
□

myagent.sinks
 = sink1 myagent.sinks.sink1.type =
avro
 myagent.sinks.sink1.hostname

=

10.10.10.10
myagent.sinks
.sink1.port

=

4545
)
· Thrift Sink: A Thrift sink retrieves events from a channel and drains the events to a downstream host. The box below shows an example of setting up an Thrift sink:

 (
□

myagent.sinks
 = sink1 myagent.sinks.sink1.type = thrift myagent.sinks.sink1.hostname

=

10.10.10.10
myagent.sinks
.sink1.port

=

4545
)
· File Roll Sink: A File Roll sink drains the events to a file on the local filesystem. The box below shows an example of setting up an File Roll sink:
 (
□

myagent.sinks
 = sink1
myagent.sinks.sink1.type

=

file_roll
myagent.sinks
.sink1.sink.directory

=

/var/log/flume
)
· Logger Sink: A Logger sink retrieves events from a channel and logs the events. The box below shows an example of setting up an Logger sink:
 (
□

myagent.sinks
 = sink1
myagent.sinks.sink1.type

=

logger
)
· IRC Sink: An IRC sink retrieves events from a channel and drains the events to an IRC host. The box below shows an example of setting up an IRC sink:
 (
□

myagent.sinks
 = sink1 myagent.sinks.sink1.type =
irc
 myagent.sinks.sink1.hostname

=

irc.example.com myagent.sinks.sink1.nick = flume myagent.sinks.sink1.chan = #flume
)
· HBaseSink: An HBase sink retrieves events from a channel and drains the events to an HBase table. The box below shows an example of setting up an HBase sink:
 (
□

myagent.sinks
 = sink1 myagent.sinks.sink1.type =
hbase
 myagent.sinks.sink1.table =
mytable
 myagent.sinks.sink1.columnFamily

=

myfam
 myagent.sinks.sink1.serializer =
org.apache
.flume.sink.hbase.RegexHbaseEventSerializer
)
· Custom Sink: Flume allows customs sinks to be integrated into the system. Custom sinks are implemented in Java. The Java class files of the custom sink along with the dependencies are included in the classpath of the Flume agent and also specified in the agent configuration file shown below:
 (
□

myagent.sinks
 = sink1
myagent.sinks.sink1.type

=

org.example.MySink
)
Flume Channels
Channels store the events while they are being moved from a source to sink.
· Memory Channel: Memory channel stores the events in the memory and provides

high throughput. However, in the event of an agent failure, the events can be lost. The box below shows an example of setting up a memory channel.
 (
□

myagent.channels
 = channel1 myagent.channels.channel1.type = memory myagent.channels.channel1.capacity

=

10000
myagent.channels
.channel1.transactionCapacity

=

10000
myagent.channels
.channel1.byteCapacityBufferPercentage

=

20
myagent.channels
.channel1.byteCapacity

=

800000
)
· 	File Channel: File channel stores the events in files on the local filesystem. Events are stored in a checkpoint file in the data directory specified in the channel configuration. The a maximum file size for the checkpoint file can be specified. The box below shows an example of setting up a file channel.
 (
□

myagent.channels
 = channel1
myagent.channels.channel1.type

=

file
myagent.channels
.channel1.checkpointDir

=

/
mnt
/flume/checkpoint myagent.channels.channel1.dataDirs = /
mnt
/flume/data
)
· 	JDBC Channel: JDBC channel stores the events in an embedded Derby database. This channel provides a durable storage for events, and the events can be recovered easily in case of agent failures. The box below shows an example of setting up a JDBC channel.
 (
□

myagent.channels
 = channel1
myagent.channels.channel1.type

=

jdbc
)
· Spillable Memory Channel: Spillable Memory channel stores events in an in-memory queue and when the queue fills up, the events are spilled onto the disk. This channel provides high throughput and fault tolerance. The box below shows an example of setting up a Spillable Memory channel.
 (
□

myagent.channels
 = channel1 myagent.channels.channel1.type

=

SPILLABLEMEMORY myagent.channels.channel1.memoryCapacity

=

10000
myagent.channels
.channel1.overflowCapacity

=

1000000
myagent.channels
.channel1.byteCapacity = 800000 myagent.channels.channel1.checkpointDir

=

/
mnt
/flume/checkpoint myagent.channels.channel1.dataDirs = /
mnt
/flume/data
)
Maximum number of events stored in a memory queue are specified using the memoryCapacity property and the maximum size of the memory queue is specified using the byteCapacity property. The in-memory queue is considered full, and the events are spilled to the disk when either the memoryCapacity or byteCapacity limit is reached.
· Custom Channel: Flume allows customs channels to be integrated into the system. Custom channels are implemented in Java. The Java class files of the custom channel along with the dependencies are included in the classpath of the Flume agent and also

specified in the agent configuration file shown below:
 (
□

myagent.channels
 = channel1
myagent.channels.channel1.type

=

org.example.MyChannel
)
Channel Selectors
Flume agents can have a single source connected to multiple channels. In such cases, the channel selector defines policy about distributing the events among the channels connected to a single source.
· 	Replicating Channel Selector: The default channel selected is the replicating selector, which replicates events received from the source to all the connected channels. The box below shows an example of the configuration of an agent which has a single source connected to three channels and uses a replicating channel selector.
 (
□

myagent.sources
 =

source1
myagent.channels
 = channel1 channel2 channel3 myagent.source.source1.selector.type = replicating myagent.source.source1.channels

=

channel1

channel2

channel3 myagent.source.source1.selector.optional = channel3
)
· Multiplexing Channel Selector: Multiplexing channel selector distributes events from a source to all the connected channels. The box below shows an example of the configuration of an agent which has a single source connected to three channels and uses a multiplexing channel selector.
 (
□

myagent.sources
 =

source1
myagent.channels
 = channel1 channel2 channel3 myagent.sources.source1.selector.type = multiplexing myagent.sources.source1.selector.header = country myagent.sources.source1.selector.mapping.IN

=

channel1 myagent.sources.source1.selector.mapping.US

=

channel2 myagent.sources.source1.selector.default = channel3
)
The header property specifies the attribute name to check for distributing the events among the channels and the mapping properties specify the mappings between the attribute values and the channels. For example, in the above configuration the header property is set to the country attribute. All the events which have the country attribute value as IN are sent to channel1 while all the events with country attribute value as the US are sent to channel2. The default channel is set as channel3.
· Custom Channel Selector: Flume allows customs channel selectors to be integrated into the system. Custom channel selectors are implemented in Java. The Java class files of the custom channel selector along with the dependencies are included in the classpath of the Flume agent and also specified in the agent configuration file shown below:
 (
□

myagent.sources
 = source1
myagent.channels
 = channel1 myagent.sources.source1.selector.type

=
)

 (
org.
example.MyChannelSelector
)
Sink Processors
Flume allows creating sink groups where a channel can be attached to a sink group to which the events are drained. A sink processor defines how the events are drained from a channel to a sink. Sink processors enable parallelism, priorities, and automatic failover.
· Load balancing Sink Processor: The load balancing sink processor allows load balancing of events drained from a channel between the sinks in the attached sink group. The load is distributed among the list of sinks specified using a round robin or random selection mechanism. The box below shows an example of an agent with a sink group and a load balancing sink processor.
 (
□

myagent.sinkgroups
 = group1 myagent.sinkgroups.group1.sinks = sink1 sink2 myagent.sinkgroups.group1.processor.type

=

load_balance
 myagent.sinkgroups.group1.processor.backoff = true myagent.sinkgroups.group1.processor.selector = random
)
· Failover Sink Processor: With Failover Sink processor, priorities can be assigned to sinks between in a sink group. The attached channel then drains the events to the highest priority sink. When the highest priority sink fails, the events are drained to the sink with one lower priority, providing automatic failover. The box below shows an example of an agent with a sink group and a failover sink processor.
 (
□

myagent.sinkgroups
 = group1 myagent.sinkgroups.group1.sinks = sink1 sink2 myagent.sinkgroups.group1.processor.type = failover
myagent.sinkgroups.group1.processor.priority.sink1

=

2
myagent.sinkgroups
.group1.processor.priority.sink2

=

4
myagent.sinkgroups
.group1.processor.maxpenalty

=

10000
)
Flume Interceptors
Flume interceptors allow events to be modified, filtered or dropped as they flow from the source to a channel. Interceptors are connected to the source. Interceptors can also be chained to each other.
· Timestamp Interceptor: The Timestamp interceptor adds the current timestamp to the headers of the events processed. Timestamp interceptor can be configured as follows:
 (
□

myagent.sources
 = source1 myagent.sources.source1.interceptors = i1 myagent.sources.source1.interceptors.i1.type

=

timestamp
)
· Host Interceptor: The Host interceptor adds the hostname of the Flume agent to the headers of the events processed. Host interceptor can be configured as follows:
 (
□

myagent.sources
 = source1
myagent.sources.source1.interceptors

=

i1
)

 (
myagent.sources
.source1.interceptors.i1.type = host myagent.sources.source1.interceptors.i1.hostHeader

=

hostname myagent.sources.source1.interceptors.i1.useIP = false
)
· Static Interceptor: Static interceptor adds a static header to the events processed. The box below shows an example of adding a static header, country, with the value set to US.
 (
□

myagent.sources
 = source1 myagent.sources.source1.interceptors = i1 myagent.sources.source1.interceptors.i1.type

=

static myagent.sources.source1.interceptors.i1.key

=

country myagent.sources.source1.interceptors.i1.value = US
)
· UUID Interceptor: The UUID adds a universally unique identifier to the headers of the events processed. UUID interceptor can be configured as follows:
 (
□

myagent.sources
 = source1 myagent.sources.source1.interceptors = i1 myagent.sources.source1.interceptors.i1.type =
uuid

myagent.sources.source1.interceptors.i1.headerName=id
)
· Regex Filtering Interceptor: Regex Filtering interceptor applies a regular expression to the event body and filters the matching events. The events matching the regular expression can either be included or excluded. Regex Filtering interceptor can be configured as follows:
 (
□

myagent.sources
 = source1 myagent.sources.source1.interceptors = i1 myagent.sources.source1.interceptors.i1.type =
regex_filter
 myagent.sources.source1.interceptors.i1.regex = .
*
myagent.sources.source1.interceptors.i1.excludeEvents

=

false
)
Flume Examples
Box 5.10 shows an example of setting up a Flume agent with NetCat Source & File Roll Sink.
 (
□

Box

5.10:

Flume

agent

with

NetCat

Source

&

File

Roll
 Sink
myagent.sources
 = r1
myagent.channels

=

c1
myagent.sinks
 = k1
Define source
myagent.sources
.r1.type =
netcat
 myagent.sources.r1.bind

=

0.0.0.0
myagent.sources
.r1.port

=

6666
#Define Sink
myagent.sinks
.k1.type

=

file_roll
myagent.sinks
.k1.sink.directory

=

/var/log/flume
)

 (
#Define Channel
myagent.channels
.c1.type

=

file
myagent.channels
.c1.checkpointDir

=

/var/flume/checkpoint myagent.channels.c1.dataDirs = /var/flume/data
#

Bind

the

source

and

sink

to

the

channel
myagent.sources
.r1.channels = c1 myagent.sinks.k1.channel = c1
)
To test the agent, run the Flume agent and then open a new terminal and run the following command:
 (
□

nc

localhost

6666
)
Type some text. The same text will be sent to sink file.
 (
□

sudo

flume-ng

agent

-c

/
etc
/flume/conf

-f

/
etc
/flume/conf/
flume.conf

-n
myagent
)
Box 5.11 shows an example of setting up a Flume agent with Twitter Source & HDFS Sink.

□ Box 5.11: Flume agent with Twitter Source & HDFS Sink

myagent.sources = r1 myagent.channels = c1 myagent.sinks = k1

Define source
myagent.sources.r1.type = org.apache.flume.source.twitter.TwitterSource myagent.sources.r1.consumerKey = <enter key here> myagent.sources.r1.consumerSecret = <enter secret here> myagent.sources.r1.accessToken = <enter token here> myagent.sources.r1.accessTokenSecret = <enter token secret here> myagent.sources.r1.maxBatchSize = 10
myagent.sources.r1.maxBatchDurationMillis = 200

#Define sink myagent.sinks.k1.type = hdfs
myagent.sinks.k1.hdfs.fileType = DataStream myagent.sinks.k1.hdfs.path = /flume/events myagent.sinks.k1.hdfs.filePrefix = eventlog myagent.sinks.k1.hdfs.fileSuffix = .log myagent.sinks.k1.hdfs.batchSize = 1000

#Define Channel myagent.channels.c1.type = file
myagent.channels.c1.checkpointDir = /var/flume/checkpoint myagent.channels.c1.dataDirs = /var/flume/data

Bind the source and sink to the channel myagent.sources.r1.channels = c1 myagent.sinks.k1.channel = c1

Box 5.12 shows an example of setting up a Flume agent with HTTP Source & File Roll Sink.
 (
□

Box

5.12:

Flume

agent

with

HTTP

Source

&

File

Roll

Sink
myagent.sources
 = r1
myagent.channels

=

c1
myagent.sinks
 = k1
Define source
myagent.sources
.r1.type = http myagent.sources.r1.bind

=

0.0.0.0
myagent.sources
.r1.port

=

8000
myagent.sources
.r1.handler

=

org.apache.flume.source.http.JSONHandler
 myagent.sources.r1.handler.nickname =
randomprops
#Define sink
myagent.sinks
.k1.type

=

file_roll
myagent.sinks
.k1.sink.directory

=

/var/log/flume
#Define Channel
myagent.channels
.c1.type

=

file
myagent.channels
.c1.checkpointDir

=

/var/flume/checkpoint myagent.channels.c1.dataDirs = /var/flume/data
#

Bind

the

source

and

sink

to

the

channel
myagent.sources
.r1.channels = c1 myagent.sinks.k1.channel = c1
)

3.1.2 Apache Sqoop
Apache Sqoop is a tool that allows importing data from relational database management systems (RDBMS) into the Hadoop Distributed File System (HDFS), Hive or HBase tables. Sqoop also allows exporting data from HDFS to RDBMS. Table 5.1 lists the various Sqoop commands.

	Tool
	Function

	import
	Import a table from a database to HDFS

	import-all-tables
	Import tables from a database to HDFS

	export codegen
create-hive-table
	Export an HDFS directory to a database table
Generate code to interact with database records Import a table definition into Hive

	eval
	Evaluate a SQL statement and display the results

	list-databases
	List available databases on a server

	list-tables
	List available tables in a database

Table 5.1: Sqoop Tools

3.1.3 Importing Data with Sqoop
Figure 5.8 shows the process of importing data from RDBMS using Sqoop. The import process begins with the user submitting a Sqoop import command. The format of an import command is shown below:
 (
□

sqoop

import

--connect

jdbc:mysql
://<IP

Address>/<Database

Name>
--username

<Username>

--password

<Password>

--table

<Table

Name>
)
The import command includes a connection string which specifies the database type, database server hostname (or IP address) and database name. Sqoop can connect to any JDBC compliant database.
An example of an import command for importing data from a table named Courses from MySQL database named Department is shown below:
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses
)
Sqoop import command launches multiple Map tasks (default is four tasks) which connect to the database and import the rows in the table in parallel to HDFS as delimited text files, binary Avro files or Hadoop SequenceFiles. The number of Map tasks used for importing data (and hence the parallelism) can be controlled using the —m option as shown in example below:
 (
□

#Use

8

map

tasks

to

import

sqoop

import

--connect
jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses

--m

8
)

 (
Map

tasks
created
Hadoop
Data

imported
RDBMS
Map

tasks
connect

to

RDBMS

and

import

data
Sqoop
Map

Task
Map

Task
Map

Task
)Sqoop import command

	Data Store

	HDFS

	

	Hive

	HBase

	

Figure 5.8: Importing data using Apache Sqoop

3.1.4 Selecting Data to Import
While in the previous example, we imported all the data from a table, Sqoop also allows importing selected data. With Sqoop import, it is possible to select a subset of columns (using the columns option) to import from a table as shown in the example below:
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses
--columns

"
name,semester
,year
"
)
You can also use an SQL query with Sqoop import to select the data to import as shown in the example below:
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/
myDB

--username

admin
--password

admin123

--query

‘SELECT

a.
*
,

b.
*

FROM

a

JOIN

b

on (a.id == b.id) WHERE $CONDITIONS’
--split-by

a.id

--target-
dir

/user/admin/
joinresults
)
In the above example, Sqoop will import the results of the query in parallel. Since each Map task will execute the same query, certain conditions are required to split the data that each Map task imports. The $CONDITIONS token is replaced with the conditions by the Sqoop import tool at the run time. The split-by option specifies, on which column the data split should be performed to import data in parallel. When using an SQL query to specify what data to import, the target-dir option is required to provide the target location for the data to be imported.

3.1.5 Custom Connectors
While Sqoop ships with a generic JDBC connector, it may be preferable to use a vendor-specific JDBC connector as they can provide higher performance. Moreover, some databases provide data movement tools which can move data with higher performance. For example, MySQL provides mysqldump tool which can be used to export data from MySQL databases. Sqoop allows such database-specific tools to be used with the Sqoop import command using the direct option. The box below shows an example of importing data from MySQL with Sqoop using the mysqldump tool:
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses

--
direct
#Passing additional arguments to database-specific tool
sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123
--table

Courses

--
direct
default-character-set=latin1
)

3.1.6 Importing Data to Hive
Sqoop allows importing data into Hive using the hive-import option as shown in the example below. When this option is set, Sqoop will automatically create a Hive table and import data into the table.

 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses

--hive-
import
)
3.1.7 Importing Data to HBase
Sqoop allows importing data into HBase using the hbase-table option along with a target HBase table name, as shown in the example below. Sqoop also supports bulk loading of data into HBase using the hbase-bulkload option.
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Courses
--
hbase
-table

Courses
)
3.1.8 Incremental Imports
Incremental imports are useful when you have previously imported some rows from a table, and you want to import the newer rows. Sqoop provides an incremental option for incremental imports. When this option is used, a mode is also required, which can either be append or lastmodified. The append mode is used when a table is updated with new rows with increasing row ID values. The column to check for the row IDs is specified using the check-column option.
The lastmodified mode is used when the rows of a table are updated and the timestamp when a row was last modified is set in a last-modified column. The column to check for the last modified timestamp is specified using the check-column option. The last-value option is used in the lastmodified mode to specify the timestamp. When Sqoop import process completes it prints the last-value. In the next import, this last-value is specified, so that Sqoop can import only rows which have a last-modified timestamp greater than the last-value.
The box below shows examples of incremental imports:
 (
□

sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Students
--check-column

id

--incremental

append
#Import

last

modified

rows
sqoop

import

--connect

jdbc:mysql
://localhost/Department
--username

admin

--password

admin123

--table

Students
--check-column last-modified --incremental
lastmodified

--last-value

“2015-04-03

15:08:45.66”
)
3.1.9 Importing All Tables
The Sqoop import-all-tables command can be used to import all tables from a database to HDFS, as shown the following example:
 (
□

sqoop

import-all-tables

--connect

jdbc:mysql
://localhost/Department
)
3.1.10 Exporting Data with Sqoop
The Sqoop export command can be used to export files from HDFS to RDBMS, as shown in the following example:

 (
□

sqoop

export

--connect

jdbc:mysql
://localhost/Department

-table

Courses
-export-
dir

/user/admin/courses
)
The target table must exist in the database. Sqoop translates the export command into a set of INSERT statements to append new rows to the table. The data from the input files is parsed and inserted into the target table. Instead of the default “insert” mode, you can also specify an “update” mode, in which Sqoop will use UPDATE statements to replace existing records in the target table. The update-mode option can be used to specify the “update” mode. With update-mode option, a mode needs to be specified which can either be updateonly or allowinsert. When updateonly mode is specified, the rows in the table are updated in the export process only if they exist. With allowinsert mode, the rows are updated if they exist in the table already or inserted if they do not exist.

3.2 Messaging Queues
Messaging queues are useful for push-pull messaging where the producers push data to the queues, and the consumers pull the data from the queues. The producers and consumers do not need to be aware of each other. Messaging queues allow decoupling of producers of data from the consumers. In this section, we will describe some message queuing systems based on protocols such as Advanced Message Queuing Protocol (AMQP) and ZeroMQ Message Transfer Protocol (ZMTP).

3.2.1 RabbitMQ
RabbitMQ implements the Advanced Message Queuing Protocol (AMQP), which is an open standard that defines the protocol for exchanges of messages between systems. AMQP clients can either be producers or consumers. The clients conforming with the standard can communicate with each other through brokers. Broker is a middleware application that receives messages from producers and routes them to consumers. The producers publish messages to the exchanges, which then distribute the messages to queues based on the defined routing rules (or bindings). AMQP brokers provide four types of exchanges: direct exchange (for point-to-point messaging), fanout exchange (for multicast messaging), topic exchange (for publish-subscribe messaging) and header exchange (that uses header attributes for making routing decisions). Exchanges use bindings which are the rules to route messages to the queues. The consumers consume the messages from the queues. AMQP is an application level protocol that uses TCP for reliable delivery. A logical connection between a producer or consumer and a broker is called a Channel. For applications which need to establish multiple connections with a broker, it is undesirable to have multiple TCP connections. For such applications, multiple Channels can be setup over a single connection.
RabbitMQ is an AMQP Broker implemented in Erlang and is designed to be highly scalable and reliable. The commands for setting up RabbitMQ are given in Box 5.13.
 (
□

Box

5.13:

Setting

up
 RabbitMQ
echo

‘deb

http://www.rabbitmq.com/debian/

testing

main’

|
sudo
 tee /
etc
/apt/
sources.list
)

 (
wget

https://www.rabbitmq.com/rabbitmq-signing-key-public.asc

sudo
 apt-key add
rabbitmq
-signing-key-
public.asc
sudo

apt-get

install

rabbitmq
-server
sudo
 pip install pika
)
Box 5.14 shows an example of a producer that sends data to a RabbitMQ queue. This example uses the pika library which is a pure-Python implementation of AMQP. The producer sends synthetic data along with the timestamp to a RabbitMQ queue.
 (
□

Box

5.14:

Example

of

a

Producer

that

sends

data

to

RabbitMQ
import

pika
from

time

import

time import
json
import

pickle,

re,

os
,

urllib
,

urllib2 from datetime import datetime
from

random

import

randrange
 import time
import

datetime
connection

=

pika.BlockingConnection
(
pika.ConnectionParameters
(
host=‘localhost’))
channel

=

connection.channel
()
channel.queue
_declare
(queue=‘test’)
while True:
data

=

str(
randrange
(
0,60))

+

‘,’

+
str(
randrange
(
0,100))

+

‘,’

+

str(
randrange
(5000,12000))

+ ‘,’ + str(
randrange
(50,350))
ts
=
time.time
()
timestamp =
datetime.datetime
.fromtimestamp
(
ts
).
strftime
(‘%Y-%m-%d

%H:%M:%S’)
msg
=‘
timestamp’:

timestamp,

‘data’:

data print msg
channel.basic
_publish
(exchange=‘’,
routing_key
=‘test’, body=
json.dumps
(msg))
print data
time.sleep
(1)
)
Box 5.15 shows an example of a consumer that consumes data from RabbitMQ queue.
 (
□

Box

5.15:

Example

of

a

Consumer

that

consumes

data

from

RabbitMQ
import

pika
connection

=

pika.BlockingConnection
(
pika.ConnectionParameters
(
host=‘localhost’))
)
 (
186
) (
Data

Acquisition
)
 (
5.4

Messaging

Queues
) (
185
)

 (
Bahga

&

Madisetti
,

⃝
c

2016
)
 (
Big

Data

Science

&

Analytics:

A

Hands-On

Approach
)

 (
channel =
connection.channel
()
channel.queue_declare
(queue=‘hello’)
def

callback(
ch
,

method,

properties,

body): print "Received %r" % (body,)
channel.basic
_consume
(callback, queue=‘hello’,
no_ack
=True)
channel.start
_consuming
()
)
3.2.2 ZeroMQ
ZeroMQ is a high-performance messaging library which provides tools to build a messaging system. Unlike other message queuing systems, ZeroMQ can work without a message broker. ZeroMQ provides various messaging patterns such as Request-Reply, Publish-Subscribe, Push-Pull and Exclusive Pair.
The commands for setting up ZeroMQ are given in Box 5.16.
 (
□

Box

5.16:

Setting

up

ZeroMQ
sudo

apt-get

install

libtool
autoconf

automake

uuid
-dev

build-
essential
wget

http://download.zeromq.org/zeromq-4.0.4.tar.gz
 tar
zxvf
 zeromq-4.0.4.tar.gz && cd zeromq-4.0.4
./
configure
make
sudo

make

install
sudo

apt-get

install

python-
zmq
)
Box 5.17 shows an example of a producer that sends data to a ZeroMQ queue.
 (
□

Box

5.17:

Example

of

Producer

that

sends

data

to

ZeroMQ
import

zmq
from

time

import

time import
json
from

random

import

randrange
 import time
import

datetime
context

=

zmq.Context
()
socket =
context.socket
(
zmq.PUSH
)
socket.bind
(‘
tcp
://127.0.0.1:5555’)
while

True:
#Generate

some

synthetic

data
data

=

str(
randrange
(
0,60))

+

‘,’

+
str(
randrange
(
0,100))

+

‘,’

+

str(
randrange
(5000,12000))

+
)

 (
‘,’

+

str(
randrange
(
50,350))
ts
=
time.time
()
timestamp =
datetime.datetime
.fromtimestamp
(
ts
).
strftime
(‘%Y-%m-%d

%H:%M:%S’)
msg
=‘
timestamp’: timestamp, ‘data’: data print msg
data

=

zmq.Message
(
json.dumps
(msg))
socket.send
(data)
print data
time.sleep
(1)
)
Box 5.18 shows an example of a consumer that consumes data from ZeroMQ queue.
 (
□

Box

5.18:

Example

of

a

Consumer

that

consumes

data

from

ZeroMQ
import

zmq
context

=

zmq.Context
()
socket =
context.socket
(
zmq.PULL
)
socket.connect
(‘
tcp
://127.0.0.1:5555’)
while

True:
data

=

socket.recv
() print data
)

3.2.3 RestMQ
RESTMQ is a message queue which is based on a simple JSON-based protocol and uses HTTP as transport. The queue is organized as REST resources. RESTMQ can be used by any client which can make HTTP calls. The commands for setting up RestMQ are given in Box 5.19.
 (
□

Box

5.19:

Setting

up
 RESTMQ
#Install

RESTMQ
sudo

apt-get

install

build-essential

curl

python-pip

redis
-server
libffi
-dev python-dev -y
libssl
-dev python-
setuptools
git

clone

https://github.com/gleicon/restmq.git cd
restmq
sudo

pip

install

-r

requirements.txt
sudo
 python setup.py install
#

Start

RESTMQ
cd

restmq
/
start_scripts
 touch
acl.conf
bash

restmq_server

-
acl
=
acl.conf

-listen=0.0.0.0

&
)
Box 5.20 shows an example of a producer that sends data to a RESTMQ queue.

 (
□

Box

5.20:

Example

of

a

Producer

that

sends

data

to

RESTMQ
import

requests import
json
 import urllib2
from

random

import

randrange
 import time
import

datetime
while

True:
#Generate

some

synthetic

data
data

=

str(
randrange
(
0,60))

+

‘,’

+
str(
randrange
(
0,100))

+

‘,’

+

str(
randrange
(5000,12000))

+ ‘,’ + str(
randrange
(50,350))
ts
=
time.time
()
timestamp =
datetime.datetime
.fromtimestamp
(
ts
).
strftime
(‘%Y-%m-%d %H:%M:%S’)
msg=‘timestamp’: timestamp, ‘data’: data
data

=

urllib.urlencode
(‘
queue’:‘test
’,

‘value’:
json.dumps
(msg)) r = urllib2.Request(‘http://localhost:8888/’, data)
f

=

urllib2.urlopen(r) data =
f.read
()
f.close
()
)
Box 5.21 shows an example of a consumer that consumes data from RESTMQ queue.
 (
□

Box

5.21:

Example

of

a

Consumer

that

consumes

data

from

RESTMQ
import

json
from

twisted.web

import

client from

twisted.python

import

log
from

twisted.internet

import

reactor
class
CometClient
(object): def

write(
self,

content):
try:
data

=

json.loads
(content) except Exception, e:
log.err
(
"cannot

decode

json
:

%s"

%

str(e))
log.err
("
json
 is:

%s" % content)
else:
log.msg(
"got

data:

%s"

%

repr
(data))
def

close(self):
pass
if

name

== "

main

":
log.startLogging
(
sys.stdout
)
client.downloadPage
("http://localhost:8888/c/test",
CometClient
())
reactor.run
()
)

 (
□

#Post

data

to

RESTMQ
curl

-X

POST

-d

"value=data"

http://localhost:8888/q/test
#Get

data

from

RESTMQ
curl

http://localhost:8888/c/test
)
3.2.4 Amazon SQS
Amazon SQS offers a highly scalable and reliable hosted queue for storing messages as they travel between distinct components of applications. SQS only guarantees that the messages will arrive, not that they will arrive in the same order in which they were put in the queue. Though, at first look, Amazon SQS may seem to be similar to Amazon Kinesis, however, both are intended for very different types of applications. While Kinesis is meant for real-time applications that involve high data ingress and egress rates, SQS is simply a queue system that stores and releases messages in a scalable manner.
SQS can be used in distributed applications in which various application components need to exchange messages. Let us look at some examples of using SQS. Box 5.22 shows the Python code for creating an SQS queue. In this example, a connection to SQS service is first established by calling boto.sqs.connect_to_region. The AWS region, access key and secret key are passed to this function. After connecting to SQS service, conn.create_queue is called to create a new queue with queue name as an input parameter. The function conn.get_all_queues is used to retrieve all SQS queues.
 (
□

Box

5.22:

Python

program

for

creating

an

SQS

queue
import

boto.sqs
ACCESS_KEY="<enter

access

key>" SECRET_KEY="<enter

secret

key>"
REGION="us-east-1"
print

"Connecting

to

SQS"
conn

=

boto.sqs.connect
_to_region
(
REGION,
aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
queue_name

=

‘
mytestqueue
’
print

"Creating

queue

with

name:

"

+

queue_name
 q =
conn.create
_queue
(
queue_name
)
print

"Created

queue

with

name:

"

+

queue_name
 print " \n Getting all queues"
rs

=

conn.get_all_
queues
(
)
)

 (
for

item

in

rs
: print item
)
Box 5.23 shows the Python code for writing to an SQS queue. After connecting to an SQS queue, the queue.write method is called with the message as an input parameter.
 (
□

Box

5.23:

Python

program

for

writing

to

an

SQS

queue
import

boto.sqs
from

boto.sqs.message

import

Message import time
ACCESS_KEY="<enter

access

key>" SECRET_KEY="<enter

secret

key>"
REGION="us-east-
1"
print

"Connecting

to

SQS"
conn

=

boto.sqs.connect
_to_region
(
REGION,
aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
queue_name

=

‘
mytestqueue
’
print

"Connecting

to

queue:

"

+

queue_name
 q =
conn.get_all_queues
(prefix=
queue_name
)
msg_datetime

=

time.asctime
(
time.localtime
(
time.time
()))
msg

=

"Test

message

generated

on:

"

+

msg_datetime
 print "Writing to queue:

" + msg
m =
Message(
)
m.set_body
(msg)
status

=

q
[
0
]
.write(m)
print

"Message

written

to

queue" count = q
[
0
]
.count
()
print

"Total

messages

in

queue:

"

+

str(count)
)
Box 5.24 shows the Python code for reading from an SQS queue. After connecting to an SQS queue, the queue.read method is called to read a message from a queue.
 (
□

Box

5.24:

Python

program

for

reading

from

an

SQS

queue
import

boto.sqs
from

boto.sqs.message

import

Message
ACCESS_KEY="<enter

access

key>"
)

 (
SECRET_KEY="<enter

secret

key>"
REGION="us-east-1"
print

"Connecting

to

SQS"
conn

=

boto.sqs.connect
_to_region
(
REGION,
aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
queue_name

=

‘
mytestqueue
’
print

"Connecting

to

queue:

"

+

queue_name
 q =
conn.get_all_queues
(prefix=
queue_name
)
count

=

q
[
0
]
.count
()
print

"Total

messages

in

queue:

"

+

str(count) print "Reading message from queue"
for

i

in

range(count): m = q
[
0
]
.read
()
print

"Message

%d:

%s"

%

(i+
1,str
(
m.get_body
()))
q
[
0
]
.
delete_message
(m)
print

"Read

%d

messages

from

queue"

%

(count)
)

3.3 Custom Connectors
Custom connectors and web services for acquiring data from data producers can be developed to meet the application requirements.

3.3.1 REST-based Connectors
Figure 5.9 shows the architecture of a REST-based custom connector. The connector exposes a REST web service. Data producers can publish data to the connector using HTTP POST requests which contain the data payload. The request data received by the connector is stored to the sink (such as local filesystem, distributed filesystem or cloud storage). The data sinks in the connector provide the functionality for processing the HTTP request and storing the data to the sink. The benefit of using a REST-based connector is that any client that can make HTTP requests can send data to the connector. Requests are stateless in nature, and each request carries all the information that is required to process the request. The HTTP headers add to the request overhead making this method unsuitable for high-throughput and real-time applications.
Implementing a REST-based Custom Connector
Let us look at an example of implementing a custom REST-based connector as shown in Figure 5.9. Box 5.25 shows the Python implementation of the REST-based connector. In this example, we use the Flask Python web framework to implement the web service. This connector publishes a single end point (such as ‘http://public-ip/api/data’), to which the
 (
192
) (
Data

Acquisition
)
 (
5.5

Custom

Connectors
) (
191
)

 (
Bahga

&

Madisetti
,

⃝
c

2016
)
 (
Big

Data

Science

&

Analytics:

A

Hands-On

Approach
)

 (
Sink
Custom Connector
Data

Sinks
REST
WebService
Sink
) (
Producer
)POST
Request (JSON data)

Store data

 (
Producer
)

Figure 5.9: REST-based custom connector

client applications can send an HTTP POST request along with the data payload. Box 5.26 shows an example of a client which sends some synthetic sensor data to the web service. The web service receives the data from the POST request payload and then publishes the data to an Amazon SQS queue and also writes the data to an Amazon DynamoDB table.
The benefit of having such a custom connector is that the client and the server become independent of each other. The web service decouples the client from the server. The server can add or change the actions (such as publishing data to a queue or storing data in a database) without the client having to be aware of the changes. The client can use any tool or programming language from which it can make an HTTP POST request. (Note: Though we call this as a REST-connector, it is not fully REST compliant as we have only implemented the POST functionality. Other methods such as GET, PUT, DELETE may not be required if the connector only allows data to be ingested.)
 (
□

Box

5.25:

Python

implementation

of

a

REST-based

custom

connector
import

boto.sqs
from

boto.sqs.message

import

Message import boto.dynamodb2
from

boto.dynamodb2.table

import

Table import
cPickle
 as pickle
import time import

datetime import
json
from

flask

import

Flask,

jsonify
,

abort,
from

flask

import

request,

make_response
,

url_for
 app =
Flask(

name

,
static_url_path
="")
ACCESS_KEY

=

<Enter

AWS

Access

Key> SECRET_KEY = <Enter Secret Key>
REGION="us-east-1"
queue_name

=

‘
sensordata
’
table_name

=

‘
sensordata
’
)

 (
#Connect

to

AWS

SQS
conn

=

boto.sqs.connect
_to_region
(
REGION,aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
q

=

conn.get_all_queues
(prefix=
queue_name
) #Connect to AWS DynamoDB
conn_dynamo

=

boto.dynamodb2.connect
_to_region(REGION,
aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
table=Table(
table_
name,connection
=
conn_dynamo
)
#Publishes data to SQS
def

publish_to_sqs
(data):
m =
Message(
)
m.set_body
(data)
status

=

q[0].write(m) return status
#Writes data to DynamoDB table def

publish_to_dynamo
(
datadir
):
item

=

table.put_item
(data=
datadir
)
@
app.errorhandler
(400)
def

bad_request
(error):
return

make_
response
(
jsonify
({‘error’:

‘Bad

request’}),

400)
@
app.errorhandler
(404)
def
not_found
(error):
return

make_
response
(
jsonify
({‘error’:

‘Not

found’}),

404)
@
app.route
(‘/api/data’,

methods=[‘POST’]) def
post_data
():
data =
json.loads
(
request.data
)
publish_to_sqs
(
pickle.dumps
(data))
publish_to_dynamo
(data)
return

jsonify
(
{‘result’:

‘true’}),

201
if

name

== ‘

main

’:
app.run
(debug=True)
)

 (
□

Box

5.26:

Python

implementation

of

client

program

that

publishes

data

to

a custom connector
from

random

import

randint
 import time
import

datetime import

requests import
json
def
getData
(
):
ts
=
time.time
()
timestamp

=

datetime.datetime
.fromtimestamp
(
ts
).
strftime
(‘%Y-%m-%d

%H:%M:%S’)
temp = str(
randint
(
0,100)) humidity

=

str(
randint
(0,100)) co2 = str(
randint
(50,500)) light = str(
randint
(0,10000))
data = {"timestamp":

timestamp, "temperature":

temp, "humidity":

humidity

,

"co2":

co2,

"light":

light}
return

data
def

publish(
datadir
):
r

=

requests.post
(
"http://localhost:5000/
api
/data", data =
json.dumps
(
datadir
),
headers
={
"Content-Type":

"application/
json
"})
while

True:
data

=

getData
(
) print data
publish(data)
time.sleep
(1)
)
3.3.2 WebSocket-based Connectors
Figure 5.10 shows the architecture of a WebSocket-based custom connector. The connector exposes a WebSocket web service. The Web Application Messaging Protocol (WAMP) which is a sub-protocol of WebSocket can be used for creating a WebSocket-based connector. WAMP provides publish-subscribe and remote procedure call (RPC) messaging patterns. Clients (or data producers) establish a TCP connection with the connector and send data frames. WebSocket connection is stateful in nature and allows full duplex communication over a single TCP connection. Data producers publish data to the WebSocket endpoints which are published by the connector. The subscribers subscribe to the WebSocket endpoints and receive data from the WebSocket web service.
Unlike request-response communication with REST, WebSockets allow full duplex communication and do not require a new connection to be setup for each message to be sent. WebSocket communication begins with a connection setup request sent by the client to the server. This request (called a WebSocket handshake) is sent over HTTP and the server interprets it as an upgrade request. If the server supports WebSocket protocol, the server responds to the WebSocket handshake response. After the connection is setup, the client and server can send data/messages to each other in full-duplex mode. There is no overhead for connection setup and termination requests for each message. WebSocket communication is

 (
Subscriber
)

 (
Producer
Custom Connector
WebSocket

WebService
Producer
Subscriber
)Data Frames

Store data

Figure 5.10: WebSocket-based custom connector

suitable for applications that have low latency or high throughput requirements.

3.3.3 MQTT-based Connectors
MQTT (MQ Telemetry Transport) is a lightweight publish-subscribe messaging protocol designed for constrained devices. MQTT is suitable for Internet of Things (IoT) applications that involve devices sending sensor data to a server or cloud-based analytics backends to be processed and analyzed. The entities involved in MQTT include:
· Publisher: Publisher is the component which publishes data to the topics managed by the Broker.
· Broker/Server: Broker manages the topics and forwards the data received on a topic to all the subscriber which are subscribed to the topic.
· Subscriber: Subscriber is the component which subscribes to the topics and receives data published on the topics by the publishers.
Implementing a MQTT-based Custom Connector
Let us look at an example of implementing a custom MQTT-based connector. Boxes 5.27 and
5.28 show the Python implementation of the MQTT subscriber and publisher components. The subscriber component in this example runs on the server, which also has an MQTT Broker running. The publisher component runs on the devices which need to publish data to the server. The devices publish data to an MQTT topic (e.g. $iot/test). The subscriber which is subscribed to the topic receives the data and processes or forwards the data. The forwarding actions may include forwarding the data to a messaging queue, writing the data to a NoSQL database or storing the data to a distributed file system.
The benefit of using the MQTT-based custom connector is that it decouples the client and the server (in space, time and synchronization dimensions). By space decoupling, we mean that the client and server do not need to know about each other. Time decoupling means that the client and server do not need to be running simultaneously. Synchronization decoupling means that the communication between client and server can happen asynchronously. The client and server do not have to wait while the messages are being processed.

 (
□

Box

5.27:

Python

implementation

of

a

MQTT-based

custom

connector
(subscriber)
import

paho.mqtt
.client

as

mqtt
 import
json
import

boto.sqs
from

boto.sqs.message

import

Message
REGION="us-east-1"
queue_name

=

‘
sensordata
’
ACCESS_KEY

=

<Enter

AWS

Access

Key> SECRET_KEY = <Enter Secret Key>
conn

=

boto.sqs.connect
_to_region
(
REGION,aws_access_key_id
=ACCESS_KEY,
aws_secret_access_key
=SECRET_KEY)
q =
conn.get_all_queues
(prefix=
queue_name
)
def

publish_to_sqs
(data): m =
Message(
)
m.set_body
(data)
status

=

q[0].write(m) return status
def
on_
connect
(
client,
userdata
, flags,
rc
): print("Connected

with

result

code

"+str(
rc
))
client.subscribe
("$
iot
/test")
def

on_
message
(
client,

userdata
,

msg): data =
json.loads
(
msg.payload
)
publish_to_sqs
(data)
client =
mqtt.Client
()
client.on_connect

=

on_connect

client.on_message

=

on_message
client.connect
("localhost",

1883,

60)
client.loop_forever
()
)
 (
□

Box

5.28:

Python

implementation

of

a

MQTT-based

custom

connector
(publisher)
import
paho.mqtt
.client
 as
mqtt
 import

paho.mqtt.publish

as

publish import time
from

random

import

randint
 import datetime
import

requests
)

 (
import

json
def
getData
(
):
ts
=
time.time
()
timestamp

=

datetime.datetime
.fromtimestamp
(
ts
).
strftime
(‘%Y-%m-%d

%H:%M:%S’)
temp = str(
randint
(
0,100)) humidity

=

str(
randint
(0,100)) co2 = str(
randint
(50,500)) light = str(
randint
(0,10000))
data

=

{"timestamp":

timestamp,
"temperature": temp, "humidity":
humidity ,
 "co2": co2, "light": light}
return

data
def

publish_to_topic
(data):
publish.single
("$
iot
/test", payload=
json.dumps
(data), hostname="localhost")
while

True:
data

=

getData
(
) print data
publish_to_topic
(data)
time.sleep
(1)
)
3.3.4 Amazon IoT
Amazon IoT is a service for collecting data from Internet of Things (IoT) devices (such as sensors and smart appliances) into the AWS cloud. The data collected can be sent to various AWS services, e.g. stored in Amazon DynamoDB database, stored in a file on S3, sent to an Amazon Kinesis data stream, sent to Amazon SNS as a push notification and inserted into a code for executing it with Amazon Lambda service.
Figure 5.11 shows the various components of the AWS IoT service.
· Device Gateway: Device Gateway enables devices to communicate with AWS IoT using MQTT or HTTP protocols. Devices can publish or subscribe to topics.
· Device Registry: Device registry (also called things registry) maintains the resources associated with each device including attributes, certificates and meta-data.
· 	Device Shadow: Device shadow maintains the state of a device as a JSON document. Applications can retrieve or update the device state using the AWS IoT REST APIs. Device shadow persists the state of the device even when the device is offline. When a device becomes online, the state is synchronized with the device shadow.
· Rules Engine: Rules engine allows you to define rules for processing messages received from devices. Using an SQL-like language, you can define rules to select data, process data and send the data to other AWS services such as DynamoDB, S3, Kinesis, SNS and Lambda.
· 	Security and Identity Service: This service allows devices to securely exchange data with the AWS IoT service. For devices communicating via MQTT, certificate-based authentication is used. Certificates have policies associated with them which authorize devices to access specific resources.

 (
AWS

IoT
Messages
Messages
Messages
Security

&

Identity

Service
Device

Registry
Device

Shadows
Device

Gateway
Rules

Engine
) (
AWS

Services
S3
DynamoDB
Lambda
Kinesis
SNS
) (
Applications
) (
IoT

Device
)Figure 5.11: Amazon IoT components

Let us look at some examples of using AWS IoT service. The first step is to create a thing from the AWS IoT dashboard as shown in Figure 5.12. Thing represents a device in the AWS IoT service. When a thing is created, an entry is created in the device registry for the device and a device shadow is also created. At this step, you can also add the optional attributes to describe the device capabilities.
[image:]
Figure 5.12: Creating a Thing from Amazon IoT dashboard

In the next step, we create a certificate which is used by the device for connecting to AWS IoT. The certificate is attached to a thing. Three files are created in this step - a certificate file, a public key file, and a private key file. Next, we create a policy and attach the policy to the certificate to assign permissions.
Box 5.29 shows a Python example for publishing messages to AWS IoT. This example uses the Paho Python MQTT client. For connecting to AWS IoT a Root Certificate Authority (CA) certificate, a client certificate and private key file is required. This example simulates a thermostat device sending the current state (temperature) to AWS IoT, which stores the state in the device shadow. To report the state over MQTT, a message is published on the topic

$aws/things/thingName/shadow/update.

□ Box 5.29: Python code for publishing messages to AWS IoT

import paho.mqtt.client as mqtt import ssl
import paho.mqtt.publish as publish

connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com", "port": 8883,
"clientId": "thermostat", "thingName": "thermostat", "caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt", "privateKey": "9795072c41-private.pem.key"
}

tlsdict= {‘ca_certs’:connection[‘caCert’], ‘certfile’:connection[‘clientCert’], ‘keyfile’:connection[‘privateKey’], ‘tls_version’:ssl.PROTOCOL_SSLv23, ‘ciphers’:None}
state="{ \"state\": {\"reported\": { \"temperature\": \"70\" } } }" publish.single("$aws/things/thermostat/shadow/update", payload=str(state),
qos=1, retain=False, hostname=connection[‘host’],
port=8883, client_id=connection[‘clientId’], keepalive=60, will=None, auth=None, tls=tlsdict, protocol=mqtt.MQTTv311)

The current state for a device can be seen from the AWS IoT dashboard as shown in Figure 5.13. Box 5.30 shows a Python example for subscribing to the state updates for a device. To receive updates from the device shadow over MQTT, the device/application can subscribe to topic the $aws/things/thingName/shadow/update/accepted.
Applications can also use the AWS IoT REST API to query for the last reported state for a device or update the device state. For example, a mobile application that controls the temperature setting for a smart thermostat can be built. The thermostat reports its current state (temperature) to AWS IoT, and the state is stored in the device shadow. The mobile application can update the desired state in the device shadow instead of directly communicating with the thermostat. The desired state is synchronized with the device, the next time it is connected to the AWS IoT service. The device state can also be updated from the AWS IoT dashboard as shown in Figure 5.14.

[image:]
Figure 5.13: Viewing the state of a thing from Amazon IoT dashboard
 (
□

Box

5.30:

Python

code

for

subscribing

to

a

topic

in

AWS
 IoT
import

paho.mqtt
.client

as

mqtt
 import
ssl
)

connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com", "port": 8883,
"clientId": "thermostat", "thingName": "thermostat", "caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt", "privateKey": "9795072c41-private.pem.key"
}

def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("$aws/things/rpi/shadow/update/accepted")

def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload))

client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message
client.tls_set(ca_certs=connection[‘caCert’], certfile=connection[‘clientCert’], keyfile=connection[‘privateKey’], cert_reqs=ssl.CERT_REQUIRED, tls_version=ssl.PROTOCOL_SSLv23, ciphers=None)

client.connect(connection[‘host’], connection[‘port’]) client.loop_forever()
[image:]
Figure 5.14: Updating the state of a thing from Amazon IoT dashboard
Let us now look at a more advanced example where we use the rule engine to send data collected from a device to different AWS services. For this example, we will create a new thing called ‘forest’ which represents a device deployed in a forest for reporting data

collected from various sensors (temperature, humidity, light, CO2). Data collected from multiple such devices deployed in a forest can be analyzed to detect forest fires. While you can use the AWS IoT Starter Kits to build physical devices with real sensors connected to them, for simplicity we will use a program which generates and sends synthetic data to AWS IoT. Box 5.31 shows a Python program for sending synthetic sensor data to AWS IoT.

□ Box 5.31: Python program for sending synthetic sensor data to AWS IoT

from random import randrange import time
import datetime
import paho.mqtt.client as mqtt import ssl
import paho.mqtt.publish as publish

connection={
"host": "A26VGTA50P1HNL.iot.us-east-1.amazonaws.com", "port": 8883,
"clientId": "forest", "thingName": "forest", "caCert": "root-CA.crt",
"clientCert": "9795072c41-certificate.pem.crt", "privateKey": "9795072c41-private.pem.key"
}

tlsdict= {‘ca_certs’:connection[‘caCert’], ‘certfile’:connection[‘clientCert’], ‘keyfile’:connection[‘privateKey’], ‘tls_version’:ssl.PROTOCOL_SSLv23, ‘ciphers’:None}

#Send some synthetic data to AWS IoT while True:
ts=time.time()

data = "{ \"state\": { \"location\": \"123\",
\"timestamp\": \""+str(ts)+"\",
\"temperature\": "+str(randrange(0,60))+",
\"humidity\": "+str(randrange(0,60))+",
\"light\": "+str(randrange(0,60))+", \"co2\": "+str(randrange(0,60))+"
}}"

print data

publish.single("$aws/things/forest/test", payload=str(data), qos=1, retain=False, hostname=connection[‘host’],
port=8883, client_id=connection[‘clientId’], keepalive=60, will=None, auth=None, tls=tlsdict, protocol=mqtt.MQTTv311)

time.sleep(1)

Next, we create two different rules in AWS IoT for analyzing this data further. The first rule as shown in Figure 5.15 sends data to an Amazon Kinesis data stream. The second rule

as shown in Figure 5.16 writes the data to an Amazon DynamoDB table.
[image:]
Figure 5.15: Creating a rule from Amazon IoT dashboard

With the rules defined, run the Python program in Box 5.31. The synthetic data generated by this program will be published to the topic $aws/things/forest/test in AWS IoT. The rules will send the data to Amazon Kinesis and Amazon DynamoDB. Figure 5.17 shows a screenshot of the Amazon DynamoDB table with the data published by the device. To read

[image:]
Figure 5.16: Creating a rule from Amazon IoT dashboard data from the Kinesis data stream, you can use the program shown in Box 5.8.

[image:]
Figure 5.17: Viewing the data stored by an AWS IoT rule into a DynamoDB table

3.3.5 Azure IoT Hub
 (
IoT

Device
)Azure IoT Hub is a fully managed service for bi-directional communication between IoT devices and the Azure cloud. Azure IoT Hub receives messages from IoT devices and sends them to various Azure services (such as Azure Stream Analytics) for further processing of messages. IoT Hub can store up to 7 days of data. Applications can use IoT Hub to send messages to the devices. Azure provides device libraries for connecting various devices to the IoT Hub. Supported protocols include HTTP 1.1 and AMQP 1.0. Support for MQTT can be added by running Azure IoT Protocol Gateway, an open source component, which can be run either locally or in the cloud. IoT Hub includes a device identity registry which is used to provision devices with their own security keys for securely connecting to the IoT Hub. Figure 5.18 shows the various components of Azure IoT Hub.

 (
Messages
(HTTP

or

AMQP)
Azure

IoT
Messages
Messages
(MQTT)
Messages
(AMQP)
Azure

IoT

Protocol

Gateway
Azure

Services
Stream

Analytics
Event

Hub
Authentication

&

Authorization
Device

Identity

Registry
IoT

Hub
) (
IoT

Device
)Figure 5.18: Azure IoT components

In the previous section, we described the example of IoT devices deployed in a forest for reporting data collected from various sensors (temperature, humidity, light, CO2) for detecting forest fires. Let us repeat the same example using Azure IoT Hub. The first step is to create an IoT Hub that will receive data from devices. Log into the Azure Preview Portal and create a new IoT Hub as shown in Figure 5.19. Once the IoT Hub has been created, open the IoT hub tile in the Preview Portal, and note down the IoT Hub Hostname. Next, select the Key icon in the IoT Hub and click on the iothubowner shared access policy as shown in Figure 5.20. Note down the connection string and primary key.
Now that the IoT Hub is operational, let us register a device with the Hub. To create a

[image:]
Figure 5.19: Creating an Azure IoT hub

new device identity, you can either use a standalone tool called Device Explorer (which runs on Windows) or a NodeJS tool called iothub-explorer. NodeJS can be installed as follows:
 (
□

#Installing

NodeJS
curl

-
sL

https://deb.nodesource.com/setup_4.x

|

sudo

-E

bash

-
sudo
 apt-get install -y
nodejs
)
Next, install the iothub-explorer tool and then generate a unique identity and connection string as follows:
 (
□

#Create

a

new

device

identity

in

the

IoT

Hub
npm
 install -g
iothub
-explorer
node

iothub
-explorer

"<enter

iothubowner

connection

string>" create
mydevice
 -connection-string
)
Note down the device connection string generated by iothub-explorer. As of writing this book, Python support libraries for IoT Hub have not been released. Therefore, we will provide an example using NodeJS. Box 5.32 shows a simple example of sending data to IoT Hub using NodeJS. In this example, use the device connection string generated by the

[image:]
Figure 5.20: Viewing details of an Azure IoT hub

iothub-explorer tool. This program generates some random synthetic data and sends it to the IoT Hub every second.
 (
□

Box

5.32:

NodeJS

code

for

sending

data

to

Azure

IoT

Hub
var

device

=

require(‘azure-
iot
-device’); var
connectionString
 = ‘<enter>
’;
var

client

=

new

device.Client
(
connectionString
,

new

device.Https
());
//

Send

some

synthetic

data

to

IoT

Hub

every

second
setInterval
(
function(
){
var

temperature

=

Math.random
()

*

100

;
 var humidity =
Math.random
()
*
100 ; var

light

=

Math.random
()

*

10000

; var co2 =
Math.random
()
*
300 ;
var

data

=

"
{
¨
deviceid
¨
:
¨
"

+

"
mydevice
"

+

"
,
¨
¨
temperature
¨
:"

+
String(temperature)

+

",

¨
humidity
¨
:"

+

String(humidity)

+
",

¨
light
¨
:"

+

String(light)

+

",

¨
co2
¨
:"

+

String(co2)

+

"

}
";
var message = new
device.Message
(data); console.log("Sending

message:

"

+

message.getData
());
client.sendEvent
(message);
},

1000);
)
To run the program use the commands show in box below:
 (
□

#Running

NodeJS

program

shown

in

Box

5.32
npm
 install
node .
)

You will be able to see the count of messages received and the devices connected in the IoT Hub dashboard as seen in Figure 5.20. Now that we can send messages to IoT Hub, let us define some rules for further processing of messages. In the case of AWS IoT, we used the Rule Engine to define the rules using an SQL-like language. Azure provides a real-time event processing engine called Azure Stream Analytics. Azure Stream Analytics allows defining real-time analytic computations on streaming data using an SQL-like language (called Stream Analytics query language). Let us create a Stream Analytics job as shown in Figure 5.21 from the Azure dashboard. A Stream Analytics job includes an input source of streaming data, a query expressed in SQL-like language and an output sink to which the results are sent. Figures 5.22, 5.23 and 5.24 show the settings for the input, query and output of the Stream Analytics job. The input source, in this case, is the IoT Hub we created previously and the output sink is an Azure Event Hub. Event Hub is a managed service for reliably collecting and processing massive amounts of data with low latency. Event Hub provides similar functionality as Amazon Kinesis.
[image:]
Figure 5.21: Creating an Azure stream analytics job

Figure 5.25 shows how to create a new Event Hub from the Azure dashboard. Once the Event Hub is created, go to the configure tab and add a new shared access policy (with Name
= "read-write" and Permissions = Send, Listen). Copy the Primary Key for the read-write policy. This policy name and the primary key are used while creating the output sink for the Stream Analytics job as shown in Figure 5.24.
Next, run the program show in Box 5.32 and monitor the Stream Analytics job and Events Hub from the Azure dashboard. You will be able to see messages being processed by the Stream Analytics job and the output being posted to the Events Hub as seen in Figures 5.26 and 5.27.
 (
□

#Running

the

Javascript

code

in

Box

5.32
npm
 install
node .
)

[image:]

Figure 5.22: Input settings for stream analytics job

[image:]

Figure 5.23: Query settings for stream analytics job

[image:]

Figure 5.24: Output settings for stream analytics job
[image:]
Figure 5.25: Creating an Event Hub from Azure dashboard

[image:]

Figure 5.26: Azure Events Hub output

[image:]

Figure 5.27: Azure Events Hub output

Summary
In this chapter, we described various data connectors which allow collecting data from raw data sources for ingesting into a distributed file system or a NoSQL database, for batch analysis of data, or which connect the data sources to stream or in-memory processing frameworks for real-time analysis of data. We described the publish-subscribe and push-pull messaging models. Publish-Subscribe is a communication model that involves publishers, brokers and consumers. Publishers send the data to the topics which are managed by the broker. When the broker receives data for a topic from the publisher, it sends the data to all the subscribed consumers. We described the Apache Kafka and Amazon Kinesis publish-subscribe messaging frameworks. Next, we described a source-sink data collection framework called Apache Flume. Apache Flume is a distributed, reliable, and available system for collecting, aggregating, and moving large amounts of data from different data sources into a centralized data store. Next, we described Apache Sqoop, which is a tool that allows importing data from relational database management systems (RDBMS) into the HDFS, Hive or HBase tables. We described various messaging queues such as RabbitMQ, ZeroMQ, RestMQ and Amazon SQS. Examples of building REST-based and MQTT-based custom connectors were provided. Finally, we described IoT services from Amazon and Azure which allow collecting data from Internet of Things (IoT) devices into the cloud, where the data can be processed further

BIG DATA STORAGE :
In the previous chapter we described tools and frameworks for the acquisition of data from various types of sources and ingesting the data into a big data stack. The options for data storage within a big data stack include a distributed filesystem or a NoSQL database. In this chapter, we will describe the Hadoop Distributed File System (HDFS) for big data storage. Once the data is moved from the data source to HDFS, we can use specialized frameworks for batch analysis or interactive querying for analyzing the data.

3.4 HDFS
HDFS is a distributed file system (DFS) that runs on large clusters and provides high-throughput access to data. HDFS is a highly fault-tolerant system and is designed to work with commodity hardware. HDFS stores each file as a sequence of blocks. The blocks of each file are replicated on multiple machines in a cluster to provide fault tolerance.
Let us look at the characteristics of HDFS:
· 	Scalable Storage for Large Files: HDFS has been designed to store large files (typically from gigabytes to terabytes in size). Large files are broken into chunks or blocks and each block is replicated across multiple machines in the cluster. HDFS has been designed to scale to clusters comprising of thousands of nodes.
· Replication: HDFS replicates data blocks to multiple machines in a cluster which makes the system reliable and fault-tolerant. The default block size used is 64MB and the default replication factor is 3.
· Streaming Data Access: HDFS has been designed for streaming data access patterns and provides high throughput streaming reads and writes. The HDFS design relaxes some of the POSIX requirements to enable streaming data access and make it suitable for batch operations thus trading off interactive access capability. This design choice has been made to meet the requirements of applications that involve write-once, read many times data access patterns. HDFS is not suited for applications that require low-latency access to data. Instead, HDFS provides high throughput data access.
· 	File Appends: HDFS was originally designed to have immutable files. Files once written to HDFS could not be modified by writing at arbitrary locations in the file or appending to the file. Recent versions of HDFS have introduced the append capability. The file append process is discussed later in the chapter.

3.4.1 HDFS Architecture
Figure 6.1 shows the architecture of HDFS. HDFS has two types of nodes: Namenode and Datanode.
Namenode
Namenode manages the filesystem namespace. All the filesystem meta-data is stored on the Namenode. While Namenode is responsible for executing operations such as opening and closing of files, no data actually flows through the Namenode. Namenode executes the read and write operations while the data is transferred directly to/from the Datanodes. HDFS splits files into blocks, and the blocks are stored on the Datanodes. For each block, multiple replicas are kept. Namenode persistently stores the filesystem meta-data and the mappings of the blocks to the datanodes, on the disk as two files: fsimage and edits files. The
 (
214
) (
Big

Data

Storage
)
 (
6.1

HDFS
) (
215
)

 (
Bahga

&

Madisetti
,

⃝
c

2016
)
 (
Big

Data

Science

&

Analytics:

A

Hands-On

Approach
)
fsimage contains a complete snapshot of the filesystem meta-data. The edits file stores the incremental updates to the meta-data.
When the Namenode starts, it loads the fsimage file into the memory and applies the edits file to bring the in-memory view of the filesystem up-to-date. Namenode then writes a new fsimage file to the disk.
 (
Rack-
1
Rack-
N
DataNode
DataNode
DataNode
DataNode
NameNode
HDFS

Client
Secondary

NameNode
)

Figure 6.1: HDFS architecture

Secondary Namenode
The edits file keeps growing in size, over time, as the incremental updates are stored. The responsibility of applying the updates to the fsimage file is delegated to the Secondary Namenode, as the Namenode may not have enough resources available, as it is performing other operations. This process is called checkpointing. The checkpointing process is done either periodically (default 1 hour) or after a certain number of uncheckpointed transactions have been reached on the Namenode.
When the checkpointing process begins, the Secondary Namenode downloads the fsimage and edits files from the Namenode to the checkpoint directory on the Secondary Namenode. The Secondary Namenode then applies the edits on the fsimage file and creates a new fsimage file. The new fsimage is uploaded by the Secondary Namenode to the Namenode.
Datanode
While the Namenode stores the filesystem meta-data, the Datanodes store the data blocks and serve the read and write requests. Datanodes periodically send heartbeat messages and block reports to the Namenode. While the heartbeat messages tell the Namenode that a Datanode is alive, the block reports contain information on the blocks on a Datanode.
Data Blocks & Replication
Blocks are replicated on the Datanodes and by default three replicas are created. The placement of replicas on the Datanodes is determined by a rack-aware placement policy. This placement policy ensures reliability and availability of the blocks. For a replication factor of three, one replica is placed on a node on a local rack, the second replica is placed on a different node on a remote rack and the third replica is placed on a different node on the same

remote rack. This ensures that even if the rack becomes unavailable, at least one replica will remain available. Placement of replicas on different nodes in the same rack minimizes the network traffic between the racks.
HDFS Read Path
Figure 6.2 shows the HDFS read path. The read process begins with the client sending a request to the Namenode to obtain the locations of the data blocks for a file. The Namenode checks if the file exists and whether the client has sufficient permissions to read the file. The Namenode responds with the data block locations sorted by the distance to the client. This helps in minimizing the traffic between the nodes as the client can read the blocks from the nearest node. For example, if the client is on the same node as a data block, it can read the data block locally. The client reads the data blocks directly from the Datanodes in order, till all the blocks have been read. The Datanodes stream the data to the client. During the read process, if a replica becomes unavailable, the client can read another replica on a different Datanode.
 (
1.

Get

block
locations
NameNode
Metadata
{file.txt

Block

A:

1,3,5
Block

B:

2,4,5
..}
DataNode
-
N
2.

Read
blocks
HDFS

Client
DataNode-
1
)

Figure 6.2: HDFS read path

HDFS Write Path
Figure 6.3 shows the HDFS write path. The write process begins with the client sending a request to the Namenode to create a new file in the filesystem namespace. The Namenode checks if the user has sufficient permissions to create the file and whether the file doesn’t already exist in the filesystem. The Namenode responds to the client with an output stream object. The client writes data to the output stream object which splits the data into packets and enqueues them into a data queue. The packets are consumed from the data queue in a separate thread, which requests the Namenode to allocate new blocks on the Datanodes to which the data should be written. Namenode responds with the locations of the blocks on the Datanodes. The client then establishes direct connections to the Datanodes on which the blocks are to be replicated forming a replication pipeline. The data packets consumed from the data queue are written to the first Datanode on the replication pipeline, which writes data to the second Datanode in the pipeline and so on. Once the packets are successfully written, each Datanode in the pipeline sends an acknowledgment. The client keeps a track of which all packets are acknowledged by the Datanodes. The process of writing data packets to the Datanodes proceeds till the block size is reached. Upon reaching the block size, the client again requests the Namenode to return a set of new blocks on the Datanodes. The client then streams the packets to the Datanodes. This process repeats till all the data packets are written and acknowledged. Finally, the client closes the output stream and sends a request to the Namenode to close the file.

1. (
NameNode
Metadata
{file.txt

Blocks:

[],
…}
) (
HDFS

Client
)Create file

8. Complete

 (
DataNode-
1
)7. Ack

6. Ack

5. Ack

2. Write block
3.
Write block
4.
Write block

 (
DataNode
-
N
) (
DataNode
-
N
)Figure 6.3: HDFS write path

3.4.2 HDFS Usage Examples
 (
□

#Copy

file

to

HDFS #Format

of

command:
hdfs

dfs

-put

<local

source>

<destination

on

HDFS>
#Example:
hdfs

dfs

-put

file

/user/
hadoop
/file
) (
□

#Get

file

from

HDFS #Format of command:
hdfs

dfs

-get

<source

on

hdfs
>

<local

destination>
#Example:
hdfs

dfs

-get

/user/
hadoop
/file

file
) (
□

#List

files

on

HDFS #Format of command:
hdfs

dfs
 -ls <
args
>
#Example:
hdfs

dfs

-ls

/user/
hadoop
/
) (
□

#Show

contents

of

a

file

on

HDFS #Format of command:
hdfs

dfs

-cat

<HDFS

Path>
#Example:
hdfs

dfs

-cat

/user/
hadoop
/file
) (
□

#Remove

a

file

on

HDFS #Format of command:
hdfs

dfs

-rm

<HDFS

Path>
#Example:
hdfs

dfs

-rm

/user/
hadoop
/file
) (
□

#Create

a

directory

on

HDFS #Format of command:
hdfs

dfs

-
mkdir

<paths>
#Example:
hdfs

dfs

-
mkdir

/user/
hadoop
/
dir
)HDFS Command Line Tools

Accessing HDFS with Python
In this section we provide Python examples of accessing HDFS using the Snakebite python package.
 (
□

#Listing

files

on

HDFS

with

Python from
snakebite.client
 import Client
client

=

Client(
"localhost",

8020,

use_trash
=False)
list(client.ls(["/"]))
) (
□

#Reading

a

file

from

HDFS

with

Python from
snakebite.client
 import Client
client

=

Client(
"localhost",

8020,

use_trash
=False)
list(
client.text
(["/user/input.txt"]))
) (
□

#Copying

a

file

from

HDFS

with

Python from
snakebite.client
 import Client
client =
Client(
"localhost", 8020,
use_trash
=False)
list(
client.copyToLocal
(["/user/input.txt"], ’/home/ubuntu/’))
)

HDFS Web Interface
HDFS provides a web interface from where you can browse the filesystem and also also download specific files as shown in Figures 6.4 and 6.5.
[image:]

Figure 6.4: Browsing files on HDFS using web interface

[image:]
Figure 6.5: Download a file from HDFS using web interface

Summary
HDFS is a distributed file system that runs on large clusters and provides high-throughput access to data. HDFS provides scalable storage for large files which are broken into blocks. The blocks are replicated to make the system reliable and fault-tolerant. The HDFS Namenode stores the filesystem meta-data and is responsible for executing operations such as opening and closing of files. The Secondary Namenode helps in the checkpointing process by applying the updates in the edits file to the fsimage file which contains a complete snapshot of the filesystem meta-data. Datanodes store the data blocks which are replicated. The placement of replicas on the Datanodes is determined by a rack-aware placement policy. We described examples of accessing HDFS using the command line tools, a Python library for HDFS and the HDFS web interface.

image2.jpeg
Create a thing

Create a thing to represent your device in the cloud. This step creates an entry in the Registry and also a Device Shadow for your device.

Name thermostat

Attributes

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a key-value pair.

Add Attribute

image3.jpeg
earn More Detall

—

e thermostat

APl endpoint https://A26VGTASOP1HNL.iot.us-east-
1.amazonaws.com/things/thermostat/s
hadow

MQTT Topic '$aws/things/thermostat/shadow/upda
te'

4 Seconds Ago

There are no attributes

Out of sync

" "desired": {
"temperature": "75"
1
5
“reported": {

"temperature”:
-

I

"delta": {
"temperature": "75"

\

J

HOWROSNWVEWN -

b p

Metadata

" "desired": {
"temperature":
"timestamp": 1
}

1

I

"reported": {
"temperature":

}

3
J

WO~ WN -

"timestamp":

image4.jpeg
m

Update State

"desired”: {
_ "temperature”: "75"
1

image5.jpeg
Create a rule

Create a rule to evaluate inbound messages published into AWS IoT. Your rule can deliver a message
to the topic of another device, or to a cloud endpoint such as a DynamoDB table.

Name your rule and add an optional description.

Description

Indicate the source of the messages you want to process with this rule.

Rule Query
Statement

Attribute
Topic Filter

Condition

send_to_Kinesis

SELECT * FROM

rar

e.g. temperature > 75

Select one or more actions to happen when the above rule query is matched by an inbound message.
Actions define additional activities that occur when messages arrive, like storing them in a database,
invoking cloud functions, or sending notifications.

Choose an action

This action will send the message to a Kinesis Stream.

*Stream Name

*Partition Key

Role Name

Send message to a real-time datast v

location

aws_iot_kinesis

v

Cancel

Add Action

@ Create anewresource @

(3]

(3]

Create a new role

image6.jpeg
o

3

Create arule

Create a rule to evaluate inbound messages published into AWS loT. Your rule can deliver a message to the topic of another device, or to a
cloud endpoint such as a DynamoDB table.

Name your rule and add an optional description.

Name | writeToDynamo

Description

Indicate the source of the messages you want to process with this rule.

'::::::3 SELECT * FROM '#'
Attribute | * o
TopicFilter | # o
Condition | e.g. temperature >75 o

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions define additional activities that
occur when messages arrive, like storing them in a database, invoking cloud functions, or sending notifications.

Choose anaction | nsertme oadatsbasetab ¥

This action will insert the message into a DynamoDB table.

*TableName | orec v| @ Createanewresource ©
*Hash Key Value | ${state.location} (i}
*Range Key Value | ${state.timestamp} o
Payload Field i}
Role Name | aws_iot_dynamoDB v| ® Createanewrole

Cancel

Add Action

image7.jpeg
‘Amazon DynamoDB Explore Table: forest

List Tables Browse Items
@® Scan OQuery[GO‘ [Lcreate nem | Edititem | [Copy.to New | [Details | [Delete item | [Exportto csv] |E 1€ < 1w0303l0adediems 3 S|
Scan On: [Table] forest: location, timestamp v | | Add Fiter ‘ ‘ Start New Scan |
O | location timestamp payload
O | 123 1446457316.37 ‘ {"metadata” : { "M" : { "co2" : { "M": { "timestamp" : { "N" : "1446460008" } } }, "humidity" : { "M" : { “timestamp" : {
u] 123 1446460402.19 ‘ {"metadata” : { "M" : { "co2" : { "M" : { "timestamp" : { "N" : "1446460405" } } }, "humidity" : { "M" : { "timestamp" : {
m] 123 1446460415.54 ‘ {"metadata” : { "M" : { "co2": { "M" : { "timestamp" : { "N" : "1446460418" } } }, "humidity" : { "M" : { "timestamp" : {

image8.jpeg
Microsoft Azure s~ New > Intemetof Things > IoT hub

+ [\[%9

%) Resource groups
B All resources
Recent

Web Apps

]

(]

. SQL databases
m Virtual machines (classic)
! Virtual machines

& Cloud services (classic)

? Subscriptions

Browse >

New

Browse

Compute

Web + Mobile
Data + Storage
Data + Analytics
Internet of Things
Networking
Media + CDN
Hybrid Integration
Security + Identity
Developer Services
Management
Container Apps

Marketplace

Recent

Stream Analytics job
Microsoft

Azure loT Hub
Microsoft

Internet of Things

ﬁ Marketplace @

Azure loT Hub
Create your o
haok it to yo

HDInsight

Microsoft's cloud-based Big Data
service. Apache Hadoop and other
popular Big Data solutions.

Machine Learning %
Build, deploy and share advanced
analytics solutions

Event Hub &

Cloud-scale telemetry ingestion
from websites, apps, and devices

Stream Analytics job
Unlock real-time insights from
streaming data

loT hub

Microsoft

Name

bahgaiothub v

Pricing and scale tier

F1 - Free

10T Hub units

L]

* Device-to-cloud partitions

* Resource group
Default-Storage-WestUS

Subscription
Free Trial

Location
East US

Pin to dashboard

image9.jpeg
bahgaiothub

Azure loT Hub

& o]

Settings Delete.

Essentials ~

5

Default-Storage-WestUs

Status
Active
Locat
East Asia

Free Trial

Usage

Messages
BAHGAIOTHUB

25%
ToTAL

Devices
BAHGAIOTHUB

10%

ToTAL

&

bahgaiothub.azure-devicesnet

usep

7503«

11/6/2015 wrc

I useD
1 /10
DATE

11/6/2015 urc

Al settings >

Shared access policies
—

poucy
iothubowner
senvice
device
registryRead

registryReadwiite

PERMISSIONS
registry write, service connect, device connect
service connect

device connect

registry read

registry wiite

iothubowner
bahgaiothub

5] x (V) 1]

s Dicard Regenkey Delete

Access policy name

Permissions
Registry read

Registry write
Service connect

Device connect

Shared access keys

Primary key

Secondary key

Connection string—primary key

Connection string—secondary key

image10.jpeg
NEW

COMPUTE

DATA SERVICES

APP SERVICES

NETWORK SERVICES

MARKETPLACE
PREVIEW.

B
B
o
&
a
2

SQL DATABASE

STORAGE

HDINSIGHT

RECOVERY SERVICES

MACHINE LEARNING

STREAM ANALYTICS'

’ QUICK CREATE

JOB NAME
bahgastream '
REGION
Central US v
REGIONAL MONITORING STORAGE ACCOUNT (]

Create new storage account

NEW STORAGE ACCOUNT NAME

bahgastorage

CREATE STREAM ANALYTICS JOB (v

image11.jpeg
bahgastreamin

general

SUBSCRIPTION

10T HUB bahgaiothub.azure-devices.net

10T HUB SHARED ACCESS POLICY iothubowner
NAME

10T HUB POLICY KEY aee

10T HUB CONSUMER GROUP

serialization

EVENT SERIALIZATION FORMAT

ENCODING

image12.jpeg
bahgastream

€3 DASHBOARD MONITOR INPUTS QUERY QUTPUTS SCALE CONFIGURE

Need help with your query? Check out some of the most common Stream Analytics query patterns here.

query

1 SELECT

2 *

3 INTO

e bahgastreamout
5 FROM

6 bahgastreamin

image13.jpeg
bahgastreamout

general

SUBSCRIPTION

SERVICE BUS NAMESPACE bahgaeventhub-ns

EVENT HUB NAME bahgaeventhub

EVENT HUB POLICY NAME readwrite

EVENT HUB POLICY KEY esessssesssesasnannne

serialization

EVENT SERIALIZATION FORMAT

ENCODING

FORMAT

advanced

PARTITION KEY COLUMN 1

image14.jpeg
NEW.

MEDIA SERVICE

SERVICE BUS

MOBILE ENGAGEMENT

'VISUAL STUDIO ONLINE

BIZTALK SERVICE

CDN

AUTOMATION

SCHEDULER

QUEUE

TOPIC

RELAY

NOTIFICATION HUB

EVENT HUB.

| %

)

s

‘QUICK CREATE

CUSTOM CREATE

EVENT HUB NAME

myeventhub

REGION

Central US

I

NAMESPACE

bahgaeventhub-ns

I

.servicebus.windows.net

CREATE A NEW EVENT HUB (v

image15.jpeg
bahgastream
&3 DASHBOARD MONITOR INPUTS QUERY QUTPUTS SCALE CONFIGURE

o DATA CONVERSION ERRORS o RUNTIMEERRORS @ INPUT EVENT BYTES ° INPUT EVENTS 4 MORE v RELATIVE v 1HOUR v o

11:42 11:48 11:54 12:00PM 12:.06 12:12 12:18 12:24 12:30 12:36 12:42

image16.jpeg
bahgaeventhub

DASHBOARD CONFIGURE CONSUMER GROUPS

@ INCOMING MESSAGES @ INCOMINGTHROUGHPUT @ INTERNAL SERVER ERR 6 MORE v RELATVE v 1HOUR +O
185 Messages

105.71 KB

1145 11:50 1155 12:00PM 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45

image17.jpeg
Permission

drwxrwxrwx

drwxr-xr-x

drwxr-xr-x

drwxr-xrx

drwxrvawx

drwXrXrX

‘Owner
yam
mapred
hdfs
hafs
hdfs

hdfs

Group

hadoop

hdfs
hdfs
hdfs

hdfs

size

0B

0B

0B

0B

0B

Replication
o

0

Block Size

0B

0B

0B

0B

0B

0B

Name
app-logs
mapred
mr-history
system
tmp

user

oot |

image18.jpeg
File information - input.txt

Block ID: 1073741827

Block Pool ID: BP-519415594-172.31.60.92-1433484213074
Generation Stamp: 1003

Size: 172

Availability:

« ip-172-31-60-92.ec2.internal

image1.png

